93 research outputs found

    On the potential of a new generation of magnetometers for MEG: a beamformer simulation study

    Get PDF
    Magnetoencephalography (MEG) is a sophisticated tool which yields rich information on the spatial, spectral and temporal signatures of human brain function. Despite unique potential, MEG is limited by a low signal-to-noise ratio (SNR) which is caused by both the inherently small magnetic fields generated by the brain, and the scalp-to-sensor distance. The latter is limited in current systems due to a requirement for pickup coils to be cryogenically cooled. Recent work suggests that optically-pumped magnetometers (OPMs) might be a viable alternative to superconducting detectors for MEG measurement. They have the advantage that sensors can be brought to within ~4 mm of the scalp, thus offering increased sensitivity. Here, using simulations, we quantify the advantages of hypothetical OPM systems in terms of sensitivity, reconstruction accuracy and spatial resolution. Our results show that a multi-channel whole-head OPM system offers (on average) a fivefold improvement in sensitivity for an adult brain, as well as clear improvements in reconstruction accuracy and spatial resolution. However, we also show that such improvements depend critically on accurate forward models; indeed, the reconstruction accuracy of our simulated OPM system only outperformed that of a simulated superconducting system in cases where forward field error was less than 5%. Overall, our results imply that the realisation of a viable whole-head multi-channel OPM system could generate a step change in the utility of MEG as a means to assess brain electrophysiological activity in health and disease. However in practice, this will require both improved hardware and modelling algorithms

    Data?driven model optimization for optically pumped magnetometer sensor arrays

    Get PDF
    © 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. Optically pumped magnetometers (OPMs) have reached sensitivity levels that make them viable portable alternatives to traditional superconducting technology for magnetoencephalography (MEG). OPMs do not require cryogenic cooling and can therefore be placed directly on the scalp surface. Unlike cryogenic systems, based on a well-characterised fixed arrays essentially linear in applied flux, OPM devices, based on different physical principles, present new modelling challenges. Here, we outline an empirical Bayesian framework that can be used to compare between and optimise sensor arrays. We perturb the sensor geometry (via simulation) and with analytic model comparison methods estimate the true sensor geometry. The width of these perturbation curves allows us to compare different MEG systems. We test this technique using simulated and real data from SQUID and OPM recordings using head-casts and scanner-casts. Finally, we show that given knowledge of underlying brain anatomy, it is possible to estimate the true sensor geometry from the OPM data themselves using a model comparison framework. This implies that the requirement for accurate knowledge of the sensor positions and orientations a priori may be relaxed. As this procedure uses the cortical manifold as spatial support there is no co-registration procedure or reliance on scalp landmarks

    A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers

    Get PDF
    Advances in the field of quantum sensing mean that magnetic field sensors, operating at room temperature, are now able to achieve sensitivity similar to that of cryogenically cooled devices (SQUIDs). This means that room temperature magnetoencephalography (MEG), with a greatly increased flexibility of sensor placement can now be considered. Further, these new sensors can be placed directly on the scalp surface giving, theoretically, a large increase in the magnitude of the measured signal. Here, we present recordings made using a single optically-pumped magnetometer (OPM) in combination with a 3D-printed head-cast designed to accurately locate and orient the sensor relative to brain anatomy. Since our OPM is configured as a magnetometer it is highly sensitive to environmental interference. However, we show that this problem can be ameliorated via the use of simultaneous reference sensor recordings. Using median nerve stimulation, we show that the OPM can detect both evoked (phase-locked) and induced (non-phase-locked oscillatory) changes when placed over sensory cortex, with signals ~4 times larger than equivalent SQUID measurements. Using source modelling, we show that our system allows localisation of the evoked response to somatosensory cortex. Further, source-space modelling shows that, with 13 sequential OPM measurements, source-space signal-to-noise ratio (SNR) is comparable to that from a 271-channel SQUID system. Our results highlight the opportunity presented by OPMs to generate uncooled, potentially low-cost, high SNR MEG systems

    Bradyrhizobium neotropicale sp. nov., isolated from effective nodules of Centrolobium paraense

    Get PDF
    Root nodule bacteria were isolated from Centrolobium paraense Tul. grown in soils from the Amazon region, State of Roraima (Brazil). 16S rRNA gene sequence analysis of seven strains (BR 10247(T), BR 10296, BR 10297, BR 10298, BR 10299, BR 10300 and BR 10301) placed them in the genus Bradyrhizobium with the closest neighbours being the type strains of Bradyrhizobium paxllaeri (98.8 % similarity), Bradyrhizobium icense (98.8 %), Bradyrhizobium lablabi (98.7 %), Bradyrhizobium jicamae (98.6 %), Bradyrhizobium elkanii (98.6 %), Bradyrhizobium pachyrhizi (98.6%) and Bradyrhizobium retamae (98.3 %). This high similarity, however, was not confirmed by the intergenic transcribed spacer (ITS) 16S-23S rRNA region sequence analysis nor by multi-locus sequence analysis. Phylogenetic analyses of five housekeeping genes (dnaK, gin/I, gyrB, recA and rpoB) revealed Bradyrhizobium iriomotense EKO5(T) (=LMG 24129(T)) to. be the most closely related type strain (95.7% sequence similarity or less). Chemotaxonomic data, including fatty acid profiles [major components being C-16:0 and summed feature 8 (18:1 omega 6c/18:1 omega 7c)] DNA G+C content, slow growth rate and carbon compound utilization patterns, supported the placement of the novel strains in the genus Bradyrhizobium. Results of DNA-DNA relatedness studies and physiological data (especially carbon source utilization) differentiated the strains from the closest recognized species of the genus Bradyrhizobium. Symbiosis-related genes for nodulation (nodC) and nitrogen fixation (nil/-I) placed the novel species in a new branch within the genus Bradyrhizobium. Based on the current data, these seven strains represent a novel species for which the name Bradyrhizobium neotropicale sp. nov. is proposed. The type strain is BR 10247(T) (=HAMBI 3599(T))

    Effect of Adjunct Metformin Treatment in Patients with Type-1 Diabetes and Persistent Inadequate Glycaemic Control. A Randomized Study

    Get PDF
    Despite intensive insulin treatment, many patients with type-1 diabetes (T1DM) have longstanding inadequate glycaemic control. Metformin is an oral hypoglycaemic agent that improves insulin action in patients with type-2 diabetes. We investigated the effect of a one-year treatment with metformin versus placebo in patients with T1DM and persistent poor glycaemic control.One hundred patients with T1DM, preserved hypoglycaemic awareness and HaemoglobinA(1c) (HbA(1c)) > or = 8.5% during the year before enrolment entered a one-month run-in on placebo treatment. Thereafter, patients were randomized (baseline) to treatment with either metformin (1 g twice daily) or placebo for 12 months (double-masked). Patients continued ongoing insulin therapy and their usual outpatient clinical care. The primary outcome measure was change in HbA(1c) after one year of treatment. At enrolment, mean (standard deviation) HbA(1c) was 9.48% (0.99) for the metformin group (n = 49) and 9.60% (0.86) for the placebo group (n = 51). Mean (95% confidence interval) baseline-adjusted differences after 12 months with metformin (n = 48) versus placebo (n = 50) were: HbA(1c), 0.13% (-0.19; 0.44), p = 0.422; Total daily insulin dose, -5.7 U/day (-8.6; -2.9), p<0.001; body weight, -1.74 kg (-3.32; -0.17), p = 0.030. Minor and overall major hypoglycaemia was not significantly different between treatments. Treatments were well tolerated.In patients with poorly controlled T1DM, adjunct metformin therapy did not provide any improvement of glycaemic control after one year. Nevertheless, adjunct metformin treatment was associated with sustained reductions of insulin dose and body weight. Further investigations into the potential cardiovascular-protective effects of metformin therapy in patients with T1DM are warranted.ClinicalTrials.gov NCT00118937

    Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function

    Get PDF
    Recent work has demonstrated that Optically Pumped Magnetometers (OPMs) can be utilised to create a wearable Magnetoencephalography (MEG) system that is motion robust. In this study, we use this system to map eloquent cortex using a clinically validated language lateralisation paradigm (covert verb generation: 120 trials, ~10 minutes total duration) in healthy adults (n=3). We show that it is possible to lateralise and localise language function on a case by case basis using this system. Specifically, we show that at a sensor and source level we can reliably detect a lateralising beta band (15-30Hz) desynchronization in all subjects. This is the first demonstration of studying human cognition with OPMs and not only highlights this technology’s utility as tool for (developmental) cognitive neuroscience but also its potential to contribute to surgical planning via mapping of eloquent cortex, especially in young children

    Moving magnetoencephalography towards real-world applications with a wearable system

    Get PDF
    Imaging human brain function with techniques such as magnetoencephalography1 (MEG) typically requires a subject to perform tasks whilst their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or in adult studies that require unconstrained head movement (e.g. spatial navigation). Here, we develop a new type of MEG system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible due to the integration of new quantum sensors2,3 that do not rely on superconducting technology, with a novel system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution whilst subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Results compare well to the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterisation of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment, and understanding the pathophysiology of movement disorders

    Cognitive neuroscience using wearable magnetometer arrays: non-invasive assessment of language function

    Get PDF
    Recent work has demonstrated that Optically Pumped Magnetometers (OPMs) can be utilised to create a wearable Magnetoencephalography (MEG) system that is motion robust. In this study, we use this system to map eloquent cortex using a clinically validated language lateralisation paradigm (covert verb generation: 120 trials, ~10 minutes total duration) in healthy adults (n=3). We show that it is possible to lateralise and localise language function on a case by case basis using this system. Specifically, we show that at a sensor and source level we can reliably detect a lateralising beta band (15-30Hz) desynchronization in all subjects. This is the first demonstration of studying human cognition with OPMs and not only highlights this technology’s utility as tool for (developmental) cognitive neuroscience but also its potential to contribute to surgical planning via mapping of eloquent cortex, especially in young children
    • …
    corecore